
FindingStronglyConnectedComponents in DistributedGraphs

William McLendon II I Bruce Hendrickson Steven J. Plimpton
SandiaNational Laboratories

f wcmclen, bahendr, sjplimp g@sandia.gov

LawrenceRauchwerger
Dept. of Computer Science,TexasA&M University

rwerger@cs.tamu.edu

Abstract

The traditional, serial, algorithm for �nding the strongly connected components in a graph is based
on depth �rst search and has complexity which is linear in the size of the graph. Depth �rst search
is di�cult to parallelize, which createsa need for a di�er ent parallel algorithm for this problem. We
describe the implementation of a recently proposed parallel algorithm that �nds strongly connected
components in distributed graphs, and discusshow it is used in a radiation transport solver.

1 In tro duction

A strongly connectedcomponent (SCC) of a directed graph is a maximal subsetof verticesin which
there is a directed path from any vertex to any other. A cycle in a directed graph is a path that is
simple except the �rst and �nal vertices are the same. Although the number of cycles in a graph
can be exponential in the number of vertices, the number of SCCsis at most linear in the number
of vertices, sinceno vertex can be in more than one SCC. For our purposeswe will only considera
subsetof vertices to be an SCC if it has more than one vertex.

Tarjan's classicserial algorithm for detection of SCCsruns linearly with respect to the number
of edgesand usesdepth-�rst search [1]. However, depth-�rst search is known to be di�cult to
parallelize { the special caseof lexicographical depth �rst search is P-Complete [2, 3], which in
practical terms meansit is unlikely that a scalableparallel algorithm exists.

There are someparallel algorithms for detecting SCCs that do not rely on depth �rst search.
Gazit and Miller have an NC algorithm which can be used for locating SCCs that usesmatrix
multiplication [4]. Vishkin and Cole [5] and Amato [6] have proposedoptimizations or extensions
of this algorithm, but they still require O(n2:376) processorsand O(log2 n) time where n is the
number of vertices in the graph. A more complicated NC algorithm developed by Kao for planar
graphs requires O(log3 n) time and n= log n processors[7]. Another parallel algorithm for planar
graphs is due to Bader [8], but our applications are non-planar, arising from graphsassociated with
�nite element meshrepresentations of 3-D domains.

In this paper we describe our modi�cation of a recently proposedalgorithm due to Fleischer, et
al. [9] and our parallel implementation of it in MPI. The Fleischer, et al. algorithm, called DCSC
for divide{and{conquer strong components is a recursive, divide{and{conquer approach that does
not rely on depth �rst search. As shown in [9], its expectedserial runtime is O(m logn), wherem is
the number of edgesand n is the number of vertices in the graph. We describe the DCSC algorithm

1

1

2
3

4

5

6
7

8

9

10

11

12

13

14
15

16

(b)(a)
16

15
14

13
12

11

10

9

8

7
61

2

3

4

5

(a) (b)

Figure 1: (a) An unstructured �nite-element mesh (left) and its associated acyclic dependencegraph for
the angle shown (right). (b) A twisted ring of meshelements that inducesa cycle for the shown angle (left),
and its dependencegraph for the angle shown (right). A sweepingmethod will deadlock when it encounters
a cycle such as this.

and our modi�cations to it in x2. We then present details of our parallel implementation in x3.
In x4 we quantify the performanceof our approach by presenting experimental results obtained on
two di�eren t machines: CPlant, a 1700processorDEC Alpha commodit y cluster and ASCI Red, a
9280processorIntel supercomputer. Both machines are located at Sandia National Laboratories.

The motivation for this work is a computational code for solving radiation transport on 3D
unstructured �nite element grids. The model of radiation transport solver we have selectedfor this
work solves the transport equations using a sweep method. Sweeping methods used in radiation
transport discretize the radiation �eld by angle, and ux propagation is computed for a set of
discrete directions or ordinates. The computation for each angle is performed by sweepingthe ux
acrossa grid, i.e., a �nite element mesh. Radiation enters a mesh cell via faceswhose outward
normals point upwind, and exits through downwind faces.This implies an order of computation on
the grid cells which, for a single ordinate direction, is represented as a directed dependencegraph
(DDG). Two example meshesand their associated dependencegraphs for a particular angle are
shown in Fig. 1.

Each of the (typically several hundred) ordinate directions induces an associated dependence
graph. Sweeping methods will deadlock if any of the dependencegraphs contains a cycle, such
as the one in the dependencegraph for the twisted grid shown in Fig. 1(b). Such situations are
not uncommon in 3-D unstructured grids and in Lagrangian simulations where the underlying
discretized object (the mesh) deforms over time. To avoid deadlock, cycles in the set of ordinate
dependencegraphs must be detected and broken before the sweep can be performed. Since the
meshelements (vertices of the dependencegraph) are distributed acrossprocessors,a key step in
parallelizing transport sweepsis a scalableparallel algorithm for cycle detection.

2 The Mo di�ed DCSC Algorithm

The main idea of the DCSC algorithm for strongly connectedcomponents is to recursively partition
the directed graph G = (V; E) in such a way that any SCCs will be entirely contained within a
singlepartition. Each recursive step in DCSC beginswith the selectionof a random pivot vertex v.
Next, the algorithm �nds Pr ed(G; v), the set of predecessorsof v, which are all the vertices which
can reach v by a directed path of edges. Similarly, it �nds Desc(G; v), the set of descendants of
v, the vertices that can be reached from v by a directed path of edges.All vertices which are not
predecessorsor descendants are in the remainder set, Rem(G; v). The partitioning is basedon the

2

following Lemma [9].

Lemma 1 The unique SCC containing v in G is Pr ed(G; v) \ Desc(G; v). Moreover, any other
SCC of G is a subsetof Pr ed(G; v), a subsetof Desc(G; v), or a subsetof Rem(G; v).

With this lemma, the graph is broken into three disjoint pieces,and the algorithm is applied
recursively to each piece. The recursion stops when partitions contain zero or one vertex. The
expected serial complexity of DCSC is shown in [9] to be O(m logn).

The DCSC algorithm is amenableto parallelism in two ways. First, each recursion generatesa
setof up to three independent problemswhich canbeanalyzedindependently. Second,the principle
computational step is the search for ancestorsand descendants which is like a topological traversal
of the graphs. This type of traversal has much more parallelism [10] than depth-�rst search used
in Tarjan's algorithm. But this parallelism comesat the cost of an extra factor of logn in the
run time. In addition, in the radiation transport applications which motivated our work, multiple
directed graphson the samenodal set needto be analyzedfor cyclessimultaneously. This provides
yet more scope for parallelism as will be discussedfurther in x3.1

The radiation transport applications of interest to us generally have few SCCs. By e�cien tly
eliminating portions of the graph without SCCs,we can reducethe sizeof a problem beforeinvoking
DCSC and soimprove overall performance. Our algorithm to do this, which we call Modi�edDCSC,
is outlined in Fig. 2. Steps(6){(11) comprisethe DCSC algorithm, but in our approach we perform
a trim step at the beginning of each iteration which tries to reducethe sizeof the graph that must
be processedby eliminating vertices which cannot be part of an SCC. The forward and backward
trim stepsinvolve topological traversalsof the graph. The forward trim beginswith all verticeswith
no ancestorsand removes them and all their edges.After their removal, someother vertices may
now have no ancestorsand they are removed. The processcontinuesuntil no more vertices can be
removed. Vertices that are part of an SCC will not be eliminated during a trim due to the nature of
the topological traversal. The reversetrim performs the sameoperation from the other end of the
graph. All verticeswith no descendants are removed recursively. Thesetwo trim operations can be
performed in O(m) serial time. If the graph has no SCCs then all the vertices will be removed in
the forward trim. It is worth noting that the trim operation exactly mimics the stepsin a transport
sweep. But in our caseinstead of simulating radiation, we merely note whether or not a given cell
can receive all the data it needsto do its computation.

We say that vertices that are reachable from a SCC are contained in the shadowof the SCC.
The forward trim of G removes all vertices from V that are not contained in SCCs or in the
forward shadow of someSCC. The reverse trim also producesa shadow in the reversedirection.
The intersection of these two shadows, which we call the dark shadowis then partitioned via a
single level of the DCSC algorithm.

Fig. 4(a) illustrates how the forward and reversetrim steps remove nodeswhich are neither a
part of nor are dependent on a SCC. A more abstract view is shown in Fig. 3(a). If the reversetrim
encounters another SCC within the shadow of the forward trim, a secondshadow will be cast by
this SCC into the previous shadow. The resulting dark shadow contains the verticesof G that must
be further processed.The e�ectiv enessof trimming the DDG is dependent on how closethe SCCs
are to the starting points of the forward and reversetopological traversals(vertices with in-degree
or out-degreezero, respectively). If we encounter a SCC early in the traversal, the shadow will be
large, thus reducing the e�ectiv enessof the trim.

The partitioning of the dark shadow into disjoint regionsis illustrated in Fig. 3(b). An example
of this partitioning on an actual dependencegraph is shown in Fig. 4(b), where the graph is

3

Algorithm: Mo di�edDCSC (G)

1. IF G has no more than 1 vertex THENreturn
2. TRIM G in forward direction
3. IF G is not empty THEN
4. TRIM G in backward direction
5. Select pivot v from the dark shadow of G
6. MARKPred(G; v) and Desc(G; v) in G
7. SCC(G; v) = Pred(G; v) \ Desc(G; v)
8. DOin parallel:
9. ModifiedDCSC(Pred(G; v) n SCC(G; v))
10. ModifiedDCSC(Desc(G; v) n SCC(G; v))
11. ModifiedDCSC(Rem(G; v))
12.ENDIF

Figure 2: Modi�edDCSC Algorithm.

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

(b)(a)

cycles

dark shadow

pivot

predecessors

successors

Figure 3: (a) An abstract 2D mesh contain-
ing two SCCs (the circular rings). The TRIM
stepsremove the white regions, leaving the dark
shadow (shaded). (b) The dark shadow is par-
titioned around the pivot into Pred, Desc, and
Rem setsby the MARK step.

Forward Trim

Backward Trim
(b)(a)

Successors

Remainder

Predecessors

���

���

	�	

	�	

�

�

���

���

���

���

�

�

���

���

���

���

���

���

���

���

���

���

���

���

Remainder

Trimmed

(c)

Predecessors

Successors

(d)

Figure 4: Example graph being trimmed in (a) by forward and backward trims. Part (b) shows the
predecessor,descendant, and remainder markings of the resulting dark shadow for the selectedpivot (the
solid vertex). Parts (c) and (d) show the subgraphsas they are reducedto strongly connectedcomponents.

partitioned into three subgraphsthat do not shareany SCCs. Fig. 4(c, d) show two more iterations
of Modi�edDCSC where the graphs are reducedto SCCs.

The dark shadow is then partitioned by a marking step. The marking algorithm proceedsas
topological traversalsof G, originating from a singlevertex in G we call the pivot, v. There are two
traversals,one which follows forward edgesfrom v marking all vertices that are reachablefrom v,
and onethat follows edgesbackwards to mark all verticesfrom which v is reachable. The topological
nature of this traversal allows for parallelism in the samemanner as in trimming.

After marking is complete, the nodes that are both predecessorsand descendants comprise
the SCC containing v. The pivot v, and any SCC containing it, are extracted from the graph,
partitioning it into three disjoint subgraphs containing Pr ed(G; v), Desc(G; v), and Rem(G; v).
The key observation of [9] is that any SCCsremaining in the graph will be wholly contained within
oneof theseregions. Thus we can call Modi�edDCSC recursively on each of the 3 new graphs. The
recursion stops when all subgraphscontain one or fewer vertices.

4

3 Implemen tation

In serial, the Modi�edDCSC algorithm outlined in Fig. 2 is straightforward to implement. The
principle computational stepsare the trim operations (a topological traversalof the graph) and the
mark operations (determination of ancestorsand descendants). Each of thesegraph operations can
be performed e�cien tly using a task queue. For the forward trim, begin by placing all the vertices
with no ancestorsin a queue of tasks. Now remove a vertex from the queue, delete it from the
graph and decrement the ancestorcount of all the vertices it points to. If any of theseverticesnow
have no ancestors,add them to the queue. When the queueis empty, the trim step is �nished. The
backward trim is closelyanalogousbut with descendants and ancestorsipp ed.

A similar approach works for the descendant (and ancestor)determinations in the mark phase.
Initially , the pivot vertex is marked and placed in a task queue. Now vertices are removed from
the task queueoneat a time, and all of their unmarked children (or parents) are added to the task
queue. The processcontinues until the task queuebecomesempty. In this way, all the trim and
mark operations in a single level of recursion can be performed in O(m) time.

We have implemented a parallel version of the Modi�edDCSC algorithm in C with MPI. Our
code takes as input a distributed �nite element grid and a list of ordinates directions (angles).
From this, we generatean independent directed dependencegraph (DDG) for each ordinate. This
is done by letting each vertex correspond to a �nite element, and each edgecorrespond to a face
shared between two adjacent �nite elements. The edge is directed according to the direction in
which the ordinate angle passesthrough the face. This manner of construction results in a set
of DDGs that have the sameset of vertices as well. A particular vertex or edgeis owned by the
sameprocessorin all graphs{the distribution of all graphscomesfrom the distribution of the mesh
acrossprocessors. The edgesare directed di�er ently for each DDG resulting in di�eren t graphs
and consequently di�eren t SCCs. Each DDG is fully distributed acrossall the processors.Since
all graphs are fully distributed, we gain additional parallelism by �nding the SCCs in each DDG
simultaneously.

Verticeson processorboundarieshave accessto ghost nodes,which store information about the
vertex on the neighboring processor. Such information includes the processorID of the owning
processor,location of the ghost node in that processor'sdata structure, as well as marking and
trimming status of the ghost node.

We should note that conceptually the forward and backward trims are separatedas in Fig. 2
but they can be performed simultaneously. The implementation of Modi�edDCSC performs its
trimming in this manner, starting from both endsand working towards the middle of each DDG.

Parallelization of the Modi�edDCSC algorithm for distributed graphs in which SCCsmay span
multiple processorsraises a number of algorithmic and software challenges as discussedin the
following subsections.

3.1 Simultaneous work on multiple problem instances

The divide-and-conquer nature of Modi�edDCSC allows us to exploit additional parallelism on
multiple problem instances. There are basically two casesof this which we can make note of: (1)
multiple subgraphsfrom each recursion, and (2) many angleswhich are processedin a radiation
transport simulation.

First, each recursive call to Modi�edDCSC will divide every graph into subgraphsbasedon the
results from vertex marking. Sincethesegraphscannot shareany SCCs(Lemma 1) they are treated
asindependent problems. Each graph containing SCCsgeneratesup to three recursive subproblems

5

as indicated in steps(9){(11) of Fig. 2. In our parallel implementation all subproblemsfor all the
di�eren t graphs are placed into the list of graphs for subsequent recursion.

Second,recall that in the radiation transport application, for which our code wasdeveloped, we
needto search for SCCs in a set of directed graphs corresponding to di�eren t ordinates. In serial,
there is no reasonnot to work on each graph in succession.But in parallel, solving each graph
in successionis not the best method becauseit would add unnecessaryoverheadfrom termination
detection, etc. Also, each of these graphs will partition di�eren tly due to randomization in pivot
selectionas well as di�erences in graph structures, so as recursion continueswe gain parallelism by
having a better overall distribution of work acrossprocessors.Searching all graphs simultaneously
also reducesidle time.

In parallel, the trim and mark stepsfor a particular ordinate will generally enablesimultaneous
activit y by only a subsetof processors.By working on all the graphs simultaneously, we can keep
more processorsbusy and so get improved overall performance. Our implementation continues to
follow the approach sketched in Fig. 2, but now multiple graphs are being worked on at the same
time. All the graphsare subjected to trimming simultaneously. Then all the searchesfor ancestors
and descendants are performed concurrently. This complicates the code since interprocessormes-
sagesand elements in the task queuemust include an indication of which graph they are associated
with.

One complication of doing this is that at a given level of recursion, there can be many subgraphs
in the systemfrom each anglebeing treated as independent graphs. We label every graph with the
two graph id tags. Ths �rst tag is used to identify the graph in its original context. The second
tag is unique for every subgraph produced via recursive partitioning.

3.2 Termination detection

Modi�edDCSC is designedto run on distributed memory computers and we do not know before-
hand how many verticesTRIM or MARK will visit. This complicatesthe trim and mark operations
in several ways. First, we don't maintain a global task queue, but rather a local queue on each
processor. A vertex that needsto be added to the work queue(or have its ancestor count decre-
mented) may reside on another processor. We handle this by sending a messageto the relevant
processorwho then marks the vertex and adds it its own local queue. This precisely mimics the
parallelization of transport sweepsdescribed by Plimpton, et al. [11]. The more subtle challengeis
determining when a trim or mark step is completed. Just becausea processorhas an empty task
queuedoesn't mean it hasno work left to do. It may yet receive a messagefrom another processor
telling it to add tasks to its queueor to decrement an ancestorcount. The trim or mark operation
isn't complete until all processorshave empty task queues,and all messageshave been received.
We cannot know a-priori how many nodeswill be visited during trimming or marking due to the
e�ects of the SCCs. Becauseof this, we must determine when there is no more work left using a
termination detection algorithm.

In our �rst implementation we useda token ring method, but this method is not scalableand
hassincebeenreplaced. The current implementation of Modi�edDCSC usesa binary tree topology
similar to the approach of Baker et. al, et al. [12] and requires only O(log P) time where P is the
number of processors.

This binary tree implementation sets up each processoras a node in a binary tree topology.
Termination only occurswhen total sends� total r eceives = 0 and no new work hasbeenperformed
since the last check. First messagesproceedup the tree, sending the ongoing count of sendsand
receivesas well as a count of the total work for each subtree.

6

(a) (b)

Figure 5: Two grids used for testing the strongly connectedcomponent detection. (a) a rectangular mesh
where the corner point of each cell is displaced by a random amount. (b) a hollow cylinder with the grid
twisted along the vertical axis.

When the root node (processor0) receivesa messagefrom both of its children, it comparesthe
counts against the termination condition and it checks that the work count is unchanged. If these
conditions are not met, the root node saves the work count and sendsa DOWN messageto each
of its children.

Upon receipt of a DOWN message,each node forwards it on to their children until the DOWN
messagesreach the leaves. A leaf will change state from DOWN to UP and will send a message
to its parent when it has no more work to do locally. This processdetects termination after two
passesthrough the tree. Sinceit is a binary tree, the scaling should be O(log P).

4 Exp erimen tal Results

We conducteda seriesof experiments to illustrate the performancecharacteristics of Modi�edDCSC
on two di�eren t parallel architectures. The �rst system used is the Intel TeraFLOPS (ASCI Red)
supercomputer at Sandia National Laboratories. It is a massively parallel distributed memory
computer consistingof 4640nodeswith 2 Intel Pentium Pro 333MHz processorsper node, or 9280
processorsin total. Each processorhas 32 KB L1 and a 512 KB L2 cache and 256 MB per node.
ASCI Red usesproprietary messagepassinghardware with 310 Mbytes/sec bandwidth and 15� sec
latency.

The secondsystem we used for gathering experimental data is the CPlant cluster at Sandia
National Laboratories. The CPlant machine is a commodit y cluster built with 500MHz DEC-Alpha
processors. Each processorhas 256 MB RAM and usesMyrinet interconnect (100 MBytes/sec,
60� seclatency).

The input graphs are generated from �nite element meshes. These meshesare made up of
hexahedral cells de�ned by 8 corner nodes. Each cell represents a vertex in our graphs for SCC
searching. An edgeis inserted betweentwo vertices if their corresponding cells sharea face.

We usedtwo geometriesfor our experiments, which are illustrated in Fig. 5. The �rst mesh is
a rectangular grid which is deformed by randomly perturbing the location of the corner nodes of
each cell. The magnitude of the random displacement is bounded by a speci�ed percentage of the
original inter-node distance. As the magnitude of corner displacement is increasedwe expect that
more SCCswill be produced, and should be evenly distributed throughout the graph.

7

1 10 100
Number of Processors

1

10

100

E
xe

cu
tio

n
T

im
e

(s
ec

)

Trim ON
Trim OFF

Effect of Trim on Execution Time
ASCI Red; Rectangular Mesh; 30% Deformation; 60 Angles

Figure 6: E�ects of TRIM on execution time of Modi�edDCSC.

The secondgeometry is a cylindrical meshconsistingof concentric stacked rings which are then
twisted to produceSCCs. Note however that the SCCswill only begeneratedfor ordinate directions
nearly parallel to the cylindrical axis. For both geometries,we maintained a scalingof 1000vertices
per graph per processorthroughout all experiments. For the warped rectangle, as we doubled the
number of processorswe doubled the number of grid points in the x then y z direction, keeping
the aspect ratio at most 2. For the cylinder, we just halved the angular separation, doubling the
number of elements in each annulus.

These two geometriesare very di�eren t in terms of the SCCs they produce and their e�ects
on the behavior of Modi�edDCSC. In the rectangular mesh, we found that the average SCC is
small, consisting of fewer than 10 vertices. For the twisted cylinder, an SCC typically consistsof
thousandsof vertices, usually all the vertices in a plane of the cylinder.

Both problems are scaled in terms of grid size, but the scaling properties of the number of
SCCs varies. Fo the cylinder the number of SCCs remains �xed, but the size of the SCCs grows
with problem size. For the rectangular problems under a �xed deformation, the size of each SCC
remains the same, but the number of them grows with problem size. These two problems were
selectedto provide insight into how the performanceof Modi�edDCSC is inuenced by the input
graphs. For parallel execution, all the grids were partitioned using the multilev el KL algorithm in
the Chaco tool [13].

4.1 Graph Trimming

The purposeof this experiment is to show the impact of the TRIM addition to the original DCSC
algorithm. With the TRIM step turned o�, we essentially have the DCSC algorithm. For this
experiment, we measuredthe execution time taken by DCSC and Modi�edDCSC to detect the
SCCsfor the rectangular meshat 30% deformation.

Figure 6 shows a comparisonof execution time on a rectangular meshwith trimming enabled
and disabled. We can seethat the addition of vertex trimming to the DCSC algorithm results in
nearly an order of magnitude reduction in execution time for this mesh type. This con�rms that
trimming o�ers a signi�cant performance improvement over the untrimmed version (DCSC) for
mesheswith sparseSCCs.

8

0 10 20 30 40 50 60
Percent Deformation

0

2000

4000

6000

8000

N
um

be
r

of
 S

C
C

s

60 Angles
220 Angles

Number of SCCs Found vs. Deformation of Rect. Mesh
CPlant, 16 Processors, 1000 vertices per processor per angle

(a)

0 10 20 30 40 50 60
Percent Deformation

0

1

2

3

4

5

6

7

E
xe

cu
tio

n
T

im
e

(s
ec

)

60 Angles
220 Angles

Execution Time vs. Deformation of Rect. Mesh
CPlant, 16 Processors, 1000 vertices per processor per angle

(b)

Figure 7: E�ects of meshdeformation on SCC count (a), and execution time, (b).

4.2 SCC Coun t

In this experiment, we studied the e�ect of increasingthe deformation in a rectangular mesh. The
number of processorswas held constant at 16 for this experiment, varying only the magnitude of
corner-node displacement in our meshesas a percentage of the distance to the nearest node. As
illustrated in Fig. 7, the number of SCCs grows rapidly with the amount of deformation. The
rightmost graph in Fig. 7, shows that the execution time also grows with the number of SCCs,
albeit less dramatically than the growth in the number of SCCs. The reasonsfor this is that
Modi�edDCSC is dependent on the number of SCCs since only one SCC per graph is found and
removed per recursive iteration. Increasingthe number of SCCswill naturally increasethe number
of iterations required to �nd them all. There is a synchronization during each recursive step of our
implementation, so it follows that our execution times will increasewith the number of iterations.

BecauseModi�edDCSC partitions each graph into as many as 3 independent subgraphswith
each iteration, and DCSC can only detect one SCC per graph per iteration, the number of SCCs
that can be found grows exponentially with each additional iteration. Therefore, if the number
of SCCs grows exponentially , we should only observe a linear growth in execution time due to
additional overheadof each additional iteration.

There is another factor to consider in this example as well. Becausethis experiment holds the
graph sizeconstant and increasesthe number of SCCspresent, we can say that the density of SCCs
is increasing. By increasingthe density of SCCsin G, we also reducethe e�ectiv enessof trimming
G.

4.3 Scaled Graphs

In this experiment, we investigated the behavior of Modi�edDCSC on scaledsizeproblemson both
CPlant and ASCI Red. For all tests, we set the graph size to 1000 vertices per processor. The
graphs in Figures 8 and 9 illustrate the execution times we will discussin this section.

The �rst graph we look at is the twisted cylinder. In this test, we scalethe problem sizewith
the number of processors,but the total number of SCCsremainsconstant. The two cylinders tested
with 0 and 10 degreesof twist produced0 and 40 SCCs,respectively, for all tests. As we can seein
the graphs of their execution times in Fig. 8, the cylinder with zero cyclesscaledvery well to 1024
processors. For this problem, the code need only perform a single TRIM for each angle. When

9

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

1

10

100

1000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Warped Ring 10 Deg. Twist
Warped Ring 0 Deg. Twist

Execution Time on ASCI Red for Scaled Meshes
440 Angles; 1000 Vertices Per Processor

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

1

10

100

1000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Warped Ring 0 Deg. Twist
Warped Ring 10 Deg. Twist

Execution Time on CPlant for Scaled Meshes
440 Angles; 1000 Vertices Per Processor

Figure 8: Execution times for the twisted cylinder mesheson ASCI Red and CPlant. Vertices scaledwith
processors1000vertices / processor.The number of SCCsis constant.

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

1

10

100

1000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Rect. 0% Deformation
Rect. 30% Deformation
Rect. 40% Deformation

Execution Time on ASCI Red for Scaled Meshes
440 Angles; 1000 Vertices Per Processor

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

1

10

100

1000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Rect. 0% Deformation
Rect. 30% Deformation
Rect. 40% Deformation

Execution Time on CPlant for Scaled Meshes
440 Angles; 1000 Vertices Per Processor

Figure 9: Execution times for the rectangular grids measuredon ASCI Red and CPlant. Vertices scaled
with 1000vertices / processor.The density of SCCsis constant for a given % deformation.

we add somecycles,the execution time beginsincreasingnoticeably around 64 processors.This is
due primarily to the increasein parallel overhead. The e�ects of synchronization and termination
detection, though minimized, are magni�ed by the cumulativ e latency of so many processors,and
Modi�edDCSC is a communication-intensive application.

The secondgraph we performed scaled testing on is the rectangular grid mesh. We applied
scalability testing to three di�eren t rectangular meshes;one with 0% deformation (no SCCs), one
with 30% deformation (moderate SCC), and one with 40% deformation (more SCCs). Figure 9
shows the execution times for Modi�edDCSC to solve these graphs measuredon ASCI Red and
CPlant. First note that unlike the twisted cylinder timings, even the zero cycle instance shows
signi�cant runtime growth with the number of processors.For the cylinder, the di�eren t ordinates
enter the geometry in di�eren t places, and so many processorscan begin working immediately.
For the rectangular grid, all the anglesenter at one of the eight corners, and so as the number of
processorsgrows the percentage of initially idle processorsgrows as well.

Second,we seethat it takes much more time to �nd all of the SCCs for these graphs than it
did for the graphs basedon cylindrical meshes.This is not unexpected becausethe SCC density
is constant for a particular graph, therefore the number of SCCsalso scaleswith problem size. So
somegrowth in runtime is expected from the observations in x4.2. However, the runtime here is

10

also e�ected by the parallel overhead. The combination of thesetwo factors, along with the initial
latency associated with a �xed number of initially active processors,leadsto the fairly substantial
runtime growth on large numbers of processors.

However it is worth noting that the radiation transport calculations that motivated our work
will require many hundredsor thousandsof secondsfor large computations on many processors.So
even this worst-caseperformanceresults in runtimes that are dominated by the physical simulation
(see,for example, [14]).

5 Conclusions

We described the implementation of a new parallel algorithm, Modi�edDCSC, that �nds strongly
connectedcomponents in direct graphs on distributed memory computers. The traditional, serial,
algorithm for �nding the strongly connectedcomponents in a graph, G(V,E), is basedon depth
�rst search and has O(jE j + jV j) complexity. Depth �rst search is di�cult to parallelize, causing
the needan algorithm with more available parallelism.

Special considerationwas taken during development for our speci�c application in sweepcalcu-
lations for radiation transport, though this algorithm is not limited to thesegraphs only.

The performanceof Modi�edDCSC is greatly e�ected by the geometryand the number of SCCs
in input graphs. Since this algorithm is dominated by communication, scalability can be limited
depending on the nature of the graph that is being searched. We have shown the results from
experiments on thousandsof processorswith reasonablescalability.

For radiation transport applications, the number of SCCsgeneratedon any given time step is
expected to be low. While in principle many SCCscan be generatedcumulativ ely over many time
steps, in practice remeshingis employed to improve the meshgeometry before the SCC count gets
very large. The execution time for Modi�edDCSC has been shown to be much lessthan that of
the numerical computation it precedes[14]

Consequently, we consider our work to be the �rst practical parallel implementation of an
algorithm to detect strongly connectedcomponents for generalgraphs.

6 Ac knowledgemen ts

This work was performed at Sandia National Laboratories, a multiprogram laboratory operated
by Sandia Corporation, a Lockheed-Martin Company, for the U.S. DOE under contract number
DE-AC-94AL85000. The work has beensponsoredby DOE's ASCI program.

References

[1] R. E. Tarjan. Depth �rst search and linear graph algorithms. SIAM J. Comput., 1(2):146{160,
June 1972.

[2] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In
Handbook of Theoretical Computer Science, Algorithms and Complexity, pages869{941. Jan
van Leeuwen, ed., Elsevier SciencePublishers B. V., 1990.

[3] J. H. Reif. Depth-�rst search is inherently sequential. Information Processing Letters,
20(5):229{234,1985.

11

[4] H. Gazit and G. L. Miller. An improved parallel algorithm that computesthe BFS numbering
of a directed graph. Information ProcessingLetters, 28(2):61{65, 1988.

[5] R. Cole and U. Vishkin. Faster optimal parallel pre�x sumsand list ranking. Information and
Computation, 81:334{352,1989.

[6] N. Amato. Improved processorbounds for parallel algorithms for weighted directed graphs.
Information ProcessingLetters, 45(3):147{152,1993.

[7] M. Y. Kao and G. E. Shannon. Linear-processorNC algorithms for planar directed graphs
I I: Directed spanningtrees. Technical Report DUKE{TR{1990{02, Duke University, Durham,
NC, 1990.

[8] D. Bader. A practical parallel algorithm for cycle detection in partitioned digraphs. Technical
Report AHPCC-TR-99-013, University of New Mexico, Albuquerque, NM, 1999.

[9] L. Fleischer, B. A. Hendrickson, and A. Pinar. On Identifying Strongly Connected Components
in Parallel in solving irregularly structured problems in parallel. volume 1800of Lecture Notes
in Computer Science, pages505{512. Springer-Verlag, 2000.

[10] Michael J. Quinn and Narsingh Deo. Parallel graph algorithms. ACM Computing Surveys
(CSUR), 16(3):319{348,1984.

[11] S. J. Plimpton, B. A. Hendrickson, S. P. Burns, and W. C. McLendon I I I. Parallel algorithms
for radiation transport on unstructured grids. In Proc. of SuperComputing 2000 (SC2000),
Dallas, TX , November 2000.

[12] A. H. Baker, S.Crivelli, and E. R. Jessup.An e�cien t parallel termination detection algorithm.
Technical Report CU-CS-915-01,University of Colorado, 2001.

[13] B. Hendricksonand R. Leland. The Chacouser'sguide,version2.0. Technical Report SAND94{
2692,Sandia National Laboratories, Albuquerque, NM, October 1994.

[14] S. J. Plimpton, B. A. Hendrickson, S. P. Burns, W. C. McLendon I I I, and L. Rauchwerger.
Parallel algorithms for Sn transport on unstructured grids. submitted to Nuclear Science and
Engineering, 2002.

12

